

A Screening Method Using Infrared Imaging to Detect Pattern Defects in Foil and Thin Film Resistors

Lyudmyla Panashchenko/NASA Goddard Space Flight Center Jay Brusse/ASRC AS&D at NASA Goddard Space Flight Center Matthew King-Smith/The College of Wooster

Acronyms

Al-N = aluminum nitride

InSb = Indium Antimonide

NEPP = NASA Electronic Parts & Packaging (NEPP) Program

NiCr = Nichrome

System-Level Resistor Failure

- During system-level testing, a NASA program experienced an intermittent open circuit failure of a surface mount Nichrome (NiCr) foil resistor
- Failure analysis identified a fracture in the resistor foil with a non-conductive aluminum nitride (Al-N) particle embedded in the NiCr foil at the failure site
- The particle significantly reduced the cross sectional area of the resistor line leading to 'hot spot' generation during powered operation
 - Power cycling lead to thermomechanical fatigue fracture of the localized constriction
- Standard part-level screening practices (e.g., short time overload) failed to detect this flawed resistor

A Case for an Improved Screening Method:

Fractured NiCr Gridline With Embedded Al-N Particle

Aluminum Nitride Particle

Foil Resistors

Resistor Material

- NiCr-based alloy is rolled into foil sheets
- Foil thickness is typically 2 5 microns

Photolithography

- Serpentine patterns are etched into the nichrome foil sheet
- Etched line widths may be as narrow as a few microns.
- Resistor pattern consists of series and parallel resistor segments
- Trim tabs built into pattern allow precise resistance adjustment

Bonding Resistor Element to Substrate

NiCr foil is adhesively bonded to an alumina substrate

Trimming to Value

• Laser (or mechanical scribe) is used to selectively cut trim tabs

Protective Coatings

Polymeric coatings encapsulate the resistor element

Foil Resistor with External Protective Coatings Removed

Foil Resistors

Size 1206 49.9 ohms

Low Values
Have Wider
Gridlines

Foil Resistors

Size 1206 49.9 ohms

Low Values
Have Wider
Gridlines

Foil Resistors

Size 1206 20,000 ohms

High Values
Have Narrower
Gridlines

Cross Section of a Surface Mount Foil Resistor

Overview

Cross Section

Traditional Resistor Screening Methods

Optical Microscopy

	Thin Film (MIL-PRF-55342)	Foil Resistors
Test Conditions	30x to 60x optical microscopy prior to encapsulation	
Sample Size	100% in-process screen	100% high reliability products only
Rejection Criteria	Voids > 50% nominal line width Bridges < 50% smallest line width	Voids > 75% nominal line width Bridges < 10% smallest line width

Void > 75% in Foil Resistor

Bridge < 10% in Foil Resistor

Traditional Resistor Screening Methods Short Time Overload

	Thin Film (MIL-PRF-55342)	Foil Resistors
Test Conditions	6.25x rated power for 5 seconds	
Sample Size	20 pcs (space level only)	10 pcs (high reliability products)
Rejection Criteria	ΔR > 0.1%	ΔR > 0.02%

It is claimed that this test will force failure of devices with the most severe pattern constrictions

Traditional Resistor Screening Methods Power Conditioning (Also referred to as Burn-In)

	Thin Film (MIL-PRF-55342)	Foil Resistors
Test Conditions	1.5x rated power for 100 hours at 70°C	
Sample Size	100% (space level only)	100% (high reliability products only)
Rejection Criteria	ΔR > 0.2%	$\Delta R > 0.03\%$

It is claimed that this test will force failure of devices with the most severe pattern constrictions

NASA

Constrictions (Voids)

Resistors with these Defects Found By End User Despite Having Been Subjected to Traditional Screening

Narrow Bridges

Resistors with these Defects Found By End User Despite Having Been Subjected to Traditional Screening

Embedded Particles

Resistors with these Defects Found By End User Despite Having Been Subjected to Traditional Screening

Potential Effects of "Constrictions" in Resistor

Lines

 Localized constriction in the resistor pattern will result in higher current density and 'hot spot' formation due to Joule heating during powered operation

- Localized constrictions are more prone to fracture especially during power cycling
 - Failure Mechanism = thermomechanical fatigue fracture
 - Failure Modes = open circuit or shift in resistance
- 'Hot spots' can also cause thermal decomposition of protective coatings and adhesives (> ~300°C) whose byproducts may accelerate failure
 - Failure Mechanism = stress corrosion cracking of resistor element + thermomechanical fatigue fracture
 - Failure Mode = open circuit or shift in resistance

A Model of Joule Heat Propagation at Local Constriction

Thermal Diffusion

The Length (L) that a thermal pulse spreads from its origin in time (t) is:

$$\boldsymbol{L} = \sqrt{(\boldsymbol{D} * \boldsymbol{t})}$$

where D is the thermal diffusivity of the material.

 $D(copper) \sim 1.2 \text{ cm}^2/s;$

D(nichrome) ~ 0.11 cm^2/s

For example, the distance the pulse spreads in 50 ms is

$$L = 0.074 cm = 0.74 mm$$
.

Simulated Slice in Resistor Line Reducing Width by 90% (i.e. 10% remaining)

High Resolution Infrared Thermography During Power Pulsing

- Examine resistor using high resolution infrared camera able to resolve features ~10 um or smaller
- 2. Apply brief power pulses (a few pulses are sufficient)
 - For example, 6.25x rated power, 50 ms, 10% duty cycle
 - Brief pulses dynamically confine the Joule heating to the "local constrictions" in the pattern
 - Brief duty cycle allows resistor to cool to ambient conditions before subsequent pulse
- 3. Analyze infrared images for localized "hot spots" within the pattern
 - Hot spots are indicative of constrictions (e.g., voids, bridges, embedded particles)
- 4. A conservative criteria: Reject parts exhibiting significant "hot spots"

High Resolution Infrared Camera with 4x lens option

Detector Type	Indium Antimonide (InSb)	
Spectral Range	3.0 - 5.0 μm	
Resolution	~4µm	
Frame Rate	Up to 132 Hz (frames per second)	
Standard Temperature Range	-20°C to 500°C (-4°F to 932°F)	
Accuracy	±2°C or ±2% of Reading	

Comparison of Two Different Infrared Cameras The same resistor having 2 constriction defects is examined

FLIR SC660 with 25 micron detector pitch

FLIR SC8300HD with 4 micron detector pitch

High Resolution Infrared Camera Identifies Hot Spots During Powered

Ope

Infrared Video Demonstration

2kΩ Foil Resistor; Size 1206; Ten 50 ms pulses at 6.25x Rated Power

The Protective Coatings are Transmissive at These Infrared Wavelengths

This feature enables use of this technique as a post-procurement screening inspection

Optical Image

Infrared Image of UNPOWERED Resistor

Infrared ImageUsing FLIR SC8300 Camera with spectral range 1.5 to 5.0 microns

Example Inspection with New Method Foil Resistor with Multiple Bridge Defects as Seen in Infrared

Applying 6.25x

Inspection Performed Without Removing **Resistor Protective Coatings**

Example Inspection with New Method Foil Resistor with Two Bridge Defects as Seen in Infrared

Applying 6.25x Rated Power for 50 ms pulses; 10% duty cycle

Example Inspection with New Method

Foil Resistor with Two Local Constriction Defects as Seen in Infrared

Applying 6.25x Rated Power for 50 ms pulses; 10% duty cycle

Example Inspection with New Method

Foil Resistor with One Local Constriction Defect as Seen

in Infrared

Applying 6.25x Rated Power for 50 ms pulses; 10% duty cycle

Example Inspection with New Method

Foil Resistor with One Local Constriction Defect as Seen

in Infrared

Applying 6.25x Rated Power for 50 ms pulses; 10% duty cycle

Conclusions

- NASA has developed a method to detect pattern defects in foil and thin film resistors using high resolution infrared thermography while applying brief power pulses
- The technique can be used at various stages:
 - In-process screen by resistor manufacturer prior to protective coating application
 - Post-procurement screen by end user if coatings are transmissive at infrared wavelengths
 - Destructive physical analysis and failure analysis

Future Work

- NASA plans to evaluate reliability of suspect parts identified by this method
 - Long-term life test comparison of suspect vs. non-suspect parts

Acknowledgements

Work Performed in Support of the

NASA Electronic Parts & Packaging (NEPP) Program

Mike Sampson

Manager, NASA EEE Parts & Packaging (NEPP) Program

Michael.J.Sampson@nasa.gov

Dr. Henning Leidecker

Chief Parts Engineer, NASA Goddard Space Flight Center

Henning.W.Leidecker@nasa.gov

Tim Mondy

Test Engineer, Arctic Slope Regional Corporation @ NASA-GSFC

Timothy.K.Mondy@nasa.gov

Backup Slides

. Resistohine Failm Resistors

- Typically a NiCr or Tantalum Nitride-based alloy sputter deposited onto an alumina substrate
- Film thickness typically 50 nm to 250 nm

Photolithography

- Serpentine patterns are etched into the thin film
- Etched line widths as narrow as a few microns
- Pattern consists of both series and parallel resistor segments
- Coarse, Intermediate and fine adjustment pattern features are built into the pattern

Trimming to Value

• Laser is used to selectively remove thin film resistor material

Protective Coatings

• Polymeric coatings encapsulate the resistor element

Example Inspection with New Method Thin Film Resistors as Seen in Infrared

Applying 6.25x Rated Power for 100 ms pulses; 10% duty cycle

Example Inspection with New Method Thin Film Resistors as Seen in Infrared

Applying 6.25x Rated Power for 100 ms pulses; 10% duty cycle

